Theory of Quantum Systems

Research profile

The main scientific interest of the Theory of Quantum Systems group is related with the modeling of nano- and mesoscopic systems. The area of ​​interest includes unconventional states of matter in highly correlated electron systems (high-temperature superconductors and magic-angle twisted bilayer graphene), solid hydrogen phases (molecular and its metallization), as well as metallic nanofims and oxide interfaces. The group also studies the phenomena related to electron transport in nanoscopic semiconductor structures and semiconductor-superconductor hybrids in the context of understanding the fundamental properties of exotic quasiparticles, and construction of next-generation electronics. The methods and computational packages used in our research are: the renormalized mean field theory (RMFT), the diagrammatic expansion of the Gutzwiller wave function method (DE-GWF), the variational quantum Monte Carlo method (VMC), the EDABI method (Exact Diagonalization Ab Initio Approach), VASP, WANNIER90, as well as the kwant library. We use self-written codes, computational packages and modern environments for remote work. TeraACMiN high performance cluster is used in the conducted research (link).

 

Head of the group

  • dr hab. inż. Michał Zegrodnik, prof. AGH (michal.zegrodnik@agh.edu.pl)

Group members

  • dr Andrzej Biborski (andrzej.biborski@agh.edu.pl)
  • dr hab. inż. Michał Nowak, prof. AGH (mpnowak@agh.edu.pl)
  • mgr Dibyendu Kuiri (kuiri@agh.edu.pl)

Research equipment

Open PhD positions

We are recruiting for the realization of Master theses, Bachelor theses and internships in our group. If you are interested, please contact us.

MSc, BSc and internships realized in our group

  • Scanning gate microscopy of suppercurrent flow in a planar Josephson junction (BSc, Kacper Kaperek)
  • Properties of single layer transition metal dichalogenides: electronic transport (MSc, Daniel Gut) 
  • A comparision of ab initio methods for calculating the properties of selected light-atom based systems in correlated state (BSc, Michał Suchorowski)
  • Electron transport simulations in semiconductor nanostructures (Internship, Daniel Grzelec)
  • Electron transport in LaAlO3/SrTiO3 interfaces in the presence of external magnetic field (Internship, Wojciech Sokołowski)
  • Magnetic focusing of quasiparticles in semiconductor-superconductor junctions (Internship, Kacper Kaperek)

Didactics

  • Computational Methods for Nanosystems (syllabus, USOS)
  • Superconducting nanostructures in science and technology

Papers

2021

  1. Helical and topological phase detection based on nonlocal conductance measurements in a three-terminal junction, P. Wójcik, D. Sticlet, P. Szumniak, and M. P. Nowak, Phys. Rev. B 104, 125410 (2021), https://doi.org/10.1103/PhysRevB.104.125410
  2. Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices, S. Heedt, M. Quintero-Pérez, F. Borsoi, A. Fursina, N. van Loo, G. P. Mazur, M. P. Nowak, M. Ammerlaan, K. Li, S. Korneychuk, J. Shen, M. A. Y. van de Poll, G. Badawy, S. Gazibegovic, N. de Jong, P. Aseev, K. van Hoogdalem, E. P. A. M. Bakkers, L. P. Kouwenhoven, Nat. Commun 12, 4914 (2021), https://doi.org/10.1038/s41467-021-25100-w
  3. Single-shot fabrication of semiconducting-superconducting nanowire devices, F. Borsoi, G. P. Mazur, N. van Loo, M. P. Nowak, L. Bourdet, K. Li, S. Korneychuk, A. Fursina, J.-Y. Wang, V. Levajac, E. Memisevic, G. Badawy, S. Gazibegovic, K. van Hoogdalem, E. P. A. M. Bakkers, L. P. Kouwenhoven, S. Heedt, M. Quintero-Pérez, Adv. Funct. Mater. 2102388 (2021), https://doi.org/10.1002/adfm.202102388
  4. Superconducting dome with extended s-wave pairing symmetry in the heavily hole-overdoped copper-oxide planes, M. Zegrodnik, P. Wójcik, and J. Spałek, Phys. Rev. B 103, 144511 (2021), https://doi.org/10.1103/PhysRevB.103.144511
  5. Superconductivity in the three-band model of cuprates: nodal direction characteristics and influence of intersite interactions, M. Zegrodnik, A Biborski. M. Fidrysiak, J. Spałek, Journal of Physics: Condensed Matter 33, 415601 (2021), https://iopscience.iop.org/article/10.1088/1361-648X/abcff6

2020

  1. SQUID pattern disruption in transition metal dichalcogenide Josephson junctions due to nonparabolic dispersion of the edge states, D. Sticlet, P. Wójcik, and M. P. Nowak, Phys. Rev. B 102, 165407 (2020), https://doi.org/10.1103/PhysRevB.102.165407
  2. Superconductivity and intra-unit-cell electronic nematic phase in the three-band model of cuprates, M. Zegrodnik, A Biborski, J. Spałek, The European Physical Journal B 93, 183 (2020), https://doi.org/10.1140/epjb/e2020-10290-3
  3. Superconducting dome in LaAlO3/SrTiO3 interfaces as a direct consequence of the extended s-wave symmetry of the gap, M. Zegrodnik and P. Wójcik, Phys. Rev. B 102, 085420 (2020), https://doi.org/10.1103/PhysRevB.102.085420
  4. Superconducting dome in doped 2D superconductors with broken inversion symmetry, P.Wójcik, M.P.Nowak, M.Zegrodnik Physica E 118, 113893 (2020), https://doi.org/10.1016/j.physe.2019.113893
  5. Valley polarized current and resonant electronic transport in a nonuniform MoS2 zigzag nanoribbon, D. Gut, M. Prokop, D. Sticlet, and M. P. Nowak, Phys. Rev. B 101, 085425 (2020), https://doi.org/10.1103/PhysRevB.101.085425
  6. Scanning gate microscopy mapping of edge current and branched electron flow in a transition metal dichalcogenide nanoribbon and quantum point contact, M. Prokop, D. Gut, M. P. Nowak, J. Phys.: Condens. Matter 32, 205302 (2020),  https://doi.org/10.1088/1361-648X/ab6f83
  7. Superconducting properties of the hole-doped three-band d−p model studied with minimal-size real-space d-wave pairing operators, A. Biborski, M. Zegrodnik, and J. Spałek, Phys. Rev. B 101, 214504 (2020), https://doi.org/10.1103/PhysRevB.101.214504

2019

  1. Superconductivity in the three-band model of cuprates: Variational wave function study and relation to the single-band case, M. Zegrodnik, A. Biborski, M. Fidrysiak, and J. Spałek, Phys. Rev. B 99, 104511 (2019), https://doi.org/10.1103/PhysRevB.99.104511
  2. Intersubband pairing induced Fulde-Ferrell phase in metallic nanofilms, P. Wójcik, M. P. Nowak, M. Zegrodnik, Phys. Rev. B 100, 045409 (2019), https://doi.org/10.1103/PhysRevB.100.045409
  3. Probing Andreev reflection reach in semiconductor-superconductor hybrids by Aharonov-Bohm effect, M. P. Nowak, P. Wojcik, Appl. Phys. Lett. 114, 043104 (2019), tekst: ttps://doi.org/10.1063/1.5063975
  4. Supercurrent carried by non-equlibrium quasiparticles in a multiterminal Josephson junction, M. P. Nowak, M. Wimmer, A. R. Akhmerov, Phys. Rev. B 99 075416 (2019), https://doi.org/10.1103/PhysRevB.99.075416

2018

  1. Durability of the superconducting gap in Majorana nanowires under orbital effects of a magnetic field, P. Wójcik and M. P. Nowak, Phys. Rev. B 97, 235445 (2018), https://doi.org/10.1103/PhysRevB.97.235445
  2. Incorporation of charge- and pair-density-wave states into the one-band model of d-wave superconductivity, M. Zegrodnik and J. Spałek, Phys. Rev. B 98, 155144 (2018), https://doi.org/10.1103/PhysRevB.98.155144
  3. Realistic estimates of superconducting properties for the cuprates: reciprocal-space diagrammatic expansion combined with variational approach, M. Fidrysiak, M. Zegrodnik, and J. Spałek, J. Phys.: Condens. Matter 30, 475602 (2018),  https://doi.org/10.1088/1361-648X/aae6fb
  4. Unconventional topological superconductivity and phase diagram for an effective two-orbital model as applied to twisted bilayer graphene, M. Fidrysiak, M. Zegrodnik, and J. Spałek, Phys. Rev. B 98, 085436 (2018),  https://doi.org/10.1103/PhysRevB.98.085436
  5. Stability of the coexistent superconducting-nematic phase under the presence of intersite interactions, M. Zegrodnik, J. Spałek, New J. Phys. 20, 063015 (2018),  https://doi.org/10.1088/1367-2630/aac6f7
  6. Valley dependent anisotropic spin splitting in silicon quantum dots, R. Ferdous, E. Kawakami, P. Scarlino, M. P. Nowak, D. R. Ward, D. E. Savage, M. G. Lagally, S. N. Coppersmith, M. Friesen, M. A. Eriksson, L. M. K. Vandersypen and R. Rahman, npj Quantum Information 4, 26 (2018),https://doi.org/10.1038/s41534-018-0075-1
  7. Renormalization of the Majorana bound state decay length in a perpendicular magnetic field, M. P. Nowak, P. Wójcik, Phys. Rev. B 97, 045419 (2018), https://doi.org/10.1103/PhysRevB.97.045419
  8. Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas, F. K. de Vries, J. Shen, R.J. Skolasinski, M. P. Nowak, D. Varjas, L. Wang, M. Wimmer, J. Ridderbos, F. A. Zwanenburg, A. Li, S. Koelling, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, Nano Lett., 18, 6483–6488 (2018), https://doi.org/10.1021/acs.nanolett.8b02981
  9. Atomization of correlated molecular-hydrogen chain: A fully microscopic variational Monte Carlo solution, A. Biborski, A. P. Kądzielawa, and J. Spałek, Phys. Rev. B 98, 085112 (2018), https://doi.org/10.1103/PhysRevB.98.085112